<<
>>

Н. Винер: астрономия и метеорология

Прекрасной иллюстрацией к проблеме обратимости-необратимости времени и соответственных им категорий является глава "Ньютоново и бергсоново время" в книге Н. Винера "Кибернетика".

Н. Винер отчетливо показал существование двух противоположных подходов и форм объективной реальности, в которых время рассматривается или существует как обратимое, с одной стороны, и необратимое, с другой. Он сопоставляет две отрасли знания — астрономию и метеорологию:

“Есть маленький гимн или песня, знакомая каждому немецкому ребенку (...). В переводе это значит: "Знаешь ли ты, сколько звездочек стоит на синем шатре небес?. Знаешь ли ты, сколько облаков проходит надо всем миром? Господь бог их сосчитал, чтобы не пропало у него ничего из всего огромного числа".

Эта песенка интересна для философа и для историка науки, ибо в ней сопоставляются две отрасли знания, имеющие то сходство, что в них рассматривается небесный свод, но совершенно различные во всех других отношениях: астрономия, древнейшая наука, и метеорология, одна из самых молодых наук, лишь сейчас начинающая заслуживать название науки. Обычные астрономические явления могут быть предсказаны за много веков, а точное предсказание погоды на завтра, вообще говоря, затруднительно и во многих случаях является очень грубым.

Что касается стихотворения, то на первый вопрос следует ответить, что в определенных границах мы действительно знаем, сколько звезд на небе. Оставляя в стороне мелкие спорные детали, касающиеся некоторых двойных и переменных звезд, можно сказать, что звезда — вполне определенный объект, весьма удобный для счета и каталогизации...

Напротив, если вы попросите метеоролога дать аналогичный перебор облаков, то он рассмеется вам в лицо или, может быть, терпеливо объяснит, что в метеорологии нет понятия облака как определенного объекта, остающегося всегда более или менее тождественными самому себе, и что если бы таковое и существовало, то у него, метеоролога, нет средств сосчитать облака, да, по существу, счет облаков его и не интересует. Метеоролог со склонностью к топологии, пожалуй, мог бы определить облако как связную область пространства, к которой плотность воды, имеющейся в твердом или жидком состоянии, превосходит некоторое значение. Но это определение не имело бы ни для кого ни малейшей ценности и описывало бы в лучшем случае весьма преходящее состояние. Метеоролога интересует в действительности лишь статистические утверждения, например; "Бостон, 17 января 1950 г., облачность 38%, перисто-кучевые облака".

Правда, есть раздел астрономии, имеющий дело, так сказать, с космической метеорологией — исследованием галактик, туманностей, звездных скоплений и их статистики... Но это очень молодой раздел астрономии, моложе метеорологии, и он лежит несколько в стороне от основного направления классической астрономии, которая, вне рамок чистой классификации и перебора, первоначально занималась больше Солнечной системой, чем миром неподвижных звезд. Именно астрономия Солнечной системы тесно связана с именами Коперника, Кеплера, Галилея и Ньютона и явилась кормилицей современной физики. Это действительно идеально простая наука. Даже до появления какой-либо динамической теории еще в Вавилоне понимали, что затмения происходят черт правильные, предсказуемые периоды и что можно узнать их наступление в прошлом и в будущем.

Люди поняли, что и само время лучше всего измерять перемещением звезд по их путям. Моделью всех событий в Солнечной системе считалось вращение колеса или ряда колес, как в птолемеевской теории эпициклов или в коперниковской теории орбит; и в любой такой теории будущее в некоторой степени повторяло прошедшее. Музыка сфер — палиндром[233]— и книга астрономии читаются одинаково в прямом и обратном направлениях. Прямое и обратное движения планетария различаются лишь начальными положениями и направлениями перемещения светил. Наконец, когда Ньютон свел все это к формальной системе постулатов и к замкнутой механике, было установлено, что основные законы не меняются при замене переменной величины времени t на -t.

Таким образом, если снять кинофильм движения планет, ускоренного так, чтобы изменения их положения были заметны, и затем пустить этот фильм в обратном направлении, то картина движения планет была бы все же возможной и согласной с механикой Ньютона. Напротив, если бы мы сняли кинофильм турбулентного движения облаков в области фронта грозы и пустили бы этот фильм в обратном направлении, то получилась бы совершенно неверная картина. Мы увидели бы нисходящие токи там, где должны быть восходящие; размеры турбулентных образований увеличивались бы; молния предшествовала бы тем изменениям строения тучи, за которыми она обычно следует, и т. д. до бесконечности.

В чем же различие природы астрономических и метеорологических явлений, вызывающее все эти особенности, и в частности то, что в астрономии время столь очевидно обратимо, а в метеорологии оно столь же очевидно необратимо? Дело прежде всего в том, что метеорологическая система всегда содержит большое число приблизительно одинаковых частиц, причем некоторые из них очень тесно связаны между собой. Напротив, астрономическая, а именно Солнечная система содержит лишь сравнительно небольшое число частиц, притом весьма различного размера и связанных между собой настолько слабо, что связи второго порядка не меняют общего характера наблюдаемой нами картины, а связи высших порядков можно совершенно не учитывать. Планеты движутся при условиях, более благоприятных обособлению некоторой ограниченной системы сил, чем условия любого физического опыта, который мы можем поставить в лаборатории. Планеты и даже Солнце по сравнении с расстояниями между ними являются настоящими точками. Упругие и пластические деформации планет настолько малы, что планеты можно считать абсолютно твердыми телами; а если даже это и не так, то во всяком случае внутренние силы планет имеют сравнительно малое значение при рассмотрении относительного движения их центров. Пространство, в котором движутся планеты, почти совершенно свободно от вещества, препятствующего их движению, а при рассмотрении взаимного притяжения планет вполне можно считать, что их массы сосредоточены в центрах и постоянны. Отклонения силы тяготения от закона обратной пропорциональности квадрату расстояния совершенно ничтожны. Положения, скорости и массы тел Солнечной системы в любой момент известны с исключительной точностью, а их будущие и прошлые положения вычисляются легко и точно — хотя бы в принципе, если и не всегда на практике. Напротив, в метеорологии число рассматриваемых частиц так велико, что точная запись их начальных положений и скоростей совершенно невозможна, а если даже и составить такую запись и вычислить будущие положения и скорости всех частиц, то мы получим лишь необозримое множество цифр, которые нужно было бы коренным образом переосмыслить, прежде чем мы смогли бы их использовать. Термины "облако", "температура", "турбулентность" и т. д. относятся не к отдельному физическому состоянию, а к распределению возможных состояний, из которых реализуется лишь одно. Если собрать все одновременные наблюдения всех метеостанций мира, то эти наблюдения не составят и одной миллиардной доли данных, необходимых для описания мгновенного состояния атмосферы в ньютонианском смысле. Они дадут лишь некоторые константы, совместимые с бесконечным числом различных атмосфер и в лучшем случае способные — при некоторых априорных допущениях определить в виде распределения вероятностей лишь некоторую меру на множестве возможных атмосфер. При помощи законов Ньютона или любой другой системы причинных законов мы можем предсказать на будущий момент лишь распределение вероятностей для констант метеорологической системы, причем надежность даже и этого предсказания уменьшается с увеличением времени.

Но и в ньютоновой системе, в которой время вполне обратимо, в задачах на вероятность и предсказание получаются асимметрические ответы для прошлого и будущего, потому что сами эти задачи асимметричны. Если я ставлю физический опыт, я перевожу рассматриваемую мной систему из прошлого в настоящее, фиксируя некоторые величины и считая себя вправе предполагать, что некоторые другие величины имеют известные статистические распределения. Затем я наблюдаю статистическое распределение результатов после данного промежутка времени. Этот процесс я не могу обратить. Для этого нужно было бы подобрать благоприятное распределение систем, которые без нашего вмешательства заканчивали бы свои процессы в определенных статистических пределах, и найти, каковы были условия в данный момент прежде. Но событие, при котором система, начавшая свой процесс с неизвестного состояния, заканчивает его в строго определенном статистическом диапазоне, бывает настолько редко, что мы можем основывать наши экспериментальные методы на ожидании и счете чудес. Говоря коротко, наше время направлено и наше отношение к будущему отлично от отношения к прошлому. Все вопросы, которые мы ставим, содержат эту асимметрию, и ответы на них также асимметричны...

Вернемся к различию между ньютоновой астрономией и метеорологией. Большинство наук занимает промежуточное положение между ними, но ближе к метеорологии, чем к астрономии"[234].

<< | >>
Источник: Балашов Л.Е.. Ошибки и перекосы категориального мышления. 2002

Еще по теме Н. Винер: астрономия и метеорология:

  1. АСТРОНОМИЯ
  2. Урок астрономии
  3. Астрономия: форпост Христа и европейскогоисторицизма
  4. 2.5.4. Математическая астрономия и принцип спасения явлений
  5. Развитие естествознания. Новая астрономия
  6. Связи комплекса Гизы с астрономией
  7. Великие открытия и изобретения в астрономии и математике XVI – XVII вв.
  8. Гегель о смешении категориальных форм
  9. Информационная метафора: :ильные и слабые стороны
  10. Солнце, звёзды и кометы
  11. Борель применяет свою концепцию статистического детерми­низма дпя раскрытия характера эволюции Вселенной
  12. МАТЕМАТИКА. ЕСТЕСТВЕННЫЕ НАУКИ
  13. 2. ОСНОВНЫЕ ОТРАСЛИ НАУКИ